
L-6 Applications Of Derivatives (Handout Module-1)

Increasing and Decreasing Functions

Let f be a real valued function defined in an interval D (a subset of R), then f is called an increasing function in an interval D_1 (a subset of D) iff for all $x_1, x_2 \in D_1$, $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ and f is called a strictly increasing function in D_1 iff for all $x_1, x_2 \in D_1$, $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Analogously, f is called a decreasing function in an interval D_2 iff for all $x_1, x_2 \in D_2$, $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$ and f is called a strictly decreasing function in D_2 iff for all $x_1, x_2 \in D_2$, $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

For graphical representation of increasing and decreasing functions see figure shown below:

Definition:- Let x_0 be a point in the domain of definition of a real valued function f. Then f is said to be increasing, strictly increasing, decreasing or strictly decreasing at x_0 if there exists an open interval I containing x_0 such that f is increasing, strictly increasing, decreasing or strictly decreasing, respectively, in I.

A function f is said to be increasing at x_0 if there exists an interval $I = (x_0 - h, x_0 + h), h > 0$ such that for $x_1, x_2 \in I$.

 $x_1 < x_2 \text{ in } I \Rightarrow f(x_1) \le f(x_2)$ Similarly, the other cases can be clarified.

Theorem 1. If a function f is continuous in [a, b], and derivable in (a, b) and

i) $f'(x) \ge 0$ for all $x \in (a, b)$, then f is increasing in [a, b].

ii) f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing in [a, b].

Theorem 2. If a function f is continuous in [a, b], and derivable in (a, b) and i) $f'(x) \le 0$ for all $x \in (a, b)$, then f is decreasing in [a, b]. ii) f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing in [a, b].

If f'(x) = 0 for all $x \in (a, b)$, then f is a constant function in [a, b].

Remark:- The formal proofs of these theorems are based on Lagrange's Mean Value Theorem.

Corollary:- If a function f is continuous in [a, b], and derivable in (a, b) and

- i) f'(x) > 0 for all x in (a, b) except for a finite number of points where f'(x) = 0, then f(x) is strictly increasing in [a, b].
- ii) f'(x) < 0 for all x in (a, b) except for a finite number of points where f'(x) = 0, then f(x) is strictly decreasing in [a, b].

Example1. Prove that the function $f(x) = x^3 - 6x^2 + 15x - 18$ is strictly increasing on R.

Solution:- Given
$$f(x) = x^3 - 6x^2 + 15x - 18$$
, $D_f = R$

Differentiating it with respect to x, we get

 $f'(x) = 3x^2 - 12x + 15 = 3(x^2 - 4x + 5)$ $= 3[(x - 2)^2 + 1] \ge 3$ $\Rightarrow f'(x) > 0 \text{ for all } x \in R$ $\Rightarrow f(x) \text{ is strictly increasing function for all } x \in R.$

Example:-2. Show that the function $f(x) = x^2 - 3x + 1$ is neither increasing nor decreasing on (0,3).

Solution:- Given
$$f(x) = x^2 - 3x + 1 \Rightarrow f'(x) = 2x - 3$$

Now $f'(x) > 0$ when $2x - 3 > 0$ *i.e* when $x > \frac{3}{2}$
 \Rightarrow the given function is increasing in $\left[\frac{3}{2}, \bowtie\right)$.
And $f'(x) < 0$ when $2x - 3 < 0$ *i.e* when $x < \frac{3}{2}$
 \Rightarrow the given function is decreasing in $(-\bowtie, \frac{3}{2}]$.

Hence, in particular, the given function is increasing in $\left[\frac{3}{2}, 3\right)$ and decreasing in $\left(0, \frac{3}{2}\right]$ Therefore, it is neither increasing nor decreasing on (0,3). **Example 3**. Find the intervals in which the function f given by

$$f(x) = \frac{4\sin x}{2 + \cos x} - x, \quad 0 \le x \le 2\pi, is$$

i) Strictly increasing ii) strictly decreasing

Solution:- Given $f(x) = \frac{4 \sin x}{2 + \cos x} - x$, $0 \le x \le 2\pi$

It is differentiable for all $x \in [0, 2\pi]$.

$$f'(x) = \frac{(2+\cos x)4\cos x - 4\sin x (-\sin x)}{(2+\cos x)^2} - 1 = \frac{8\cos x + 4(\cos^2 x + \sin^2 x) - (2+\cos x)^2}{(2+\cos x)^2}$$
$$f'(x) = \frac{8\cos x + 4 - 4 - \cos^2 x - 4\cos x}{(2+\cos x)^2} = \frac{4\cos x - \cos^2 x}{(2+\cos x)^2} = \frac{(4-\cos x)\cos x}{(2+\cos x)^2}$$
$$f'(x) = \frac{(4-\cos x)\cos x}{(2+\cos x)^2}$$

We note that $-1 \le \cos x \le 1$, for all $x \in [0, 2\pi]$

$$\Rightarrow 1 \ge -\cos x \ge -1, \text{ for all } x \in [0, 2\pi]$$

$$\Rightarrow 5 \ge 4 - \cos x \ge 3, \text{ for all } x \in [0, 2\pi]$$

$$\Rightarrow 4 - \cos x > 0, \text{ also } (2 + \cos x)^2 > 0, \text{ for all } x \in [0, 2\pi]$$

$$\therefore \frac{(4 - \cos x)}{(2 + \cos x)^2} > 0, \text{ for all } x \in [0, 2\pi]$$

i) f is strictly increasing iff f'(x) > 0

$$\Rightarrow \frac{(4 - \cos x) \cos x}{(2 + \cos x)^2} > 0 \Rightarrow \cos x > 0$$
$$\Rightarrow x \in \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$
$$\therefore \text{ f is strictly increasing in } \left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right].$$

ii) f is strictly decreasing iff
$$f'(x) < 0$$

$$\Rightarrow \frac{(4 - \cos x) \cos x}{(2 + \cos x)^2} < 0 \Rightarrow \cos x < 0$$
$$\Rightarrow x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$$

 \therefore f is strictly decreasing in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.